Community-based flood alert system using long-range technology for Brgy. San Agustin, San Jose, Occidental Mindoro

Authors

  • Adrian Paul N. Abella Occidental Mindoro State College Author
  • Dr. Michelle D. Enriquez Occidental Mindoro State College Author

Keywords:

flood alert system, Arduino Uno, LoRA, GSM module, water level sensors

Abstract

Floods are common disasters experienced in almost all parts of the world. The Philippines experienced varying degrees of flood events and almost all parts of the country are monitored during heavy rains and typhoons. As flood events continue to increase in the future, disaster risk management agencies intensifies strategies to mitigate impacts of flood at barangay level. This study presented a flood alert system for Brgy. San Agustin, San Jose Occidental Mindoro, Philippines to inform the community during the risk of flood. The developed system is composed of Arduino Uno microcontroller, Long Range, Global System for Mobile communication Module, water level sensors and temperature-humidity sensors. Once the sensors are activated and detected the water level, it will send alert message to the Global System for Mobile communication module and send flood alert messages to the receiver with response time of not exceeding ten (10) seconds. The simulation programmed in Arduino Uno showed that it is capable of real-time detection of water level and sending alert messages. The performance of the GSM module showed its capability of sending flood alert messages based on the water level detection. The developed system successfully showed its ability to send flood alert messages with corresponding alert description.   

Author Biographies

  • Adrian Paul N. Abella, Occidental Mindoro State College

    Adrian Paul N. Abella is a faculty of the College of Engineering at Occidental Mindoro State College, Philippines. He is currently pursuing his Master of Science in Electronics Communication Engineering at Mapua University, Philippines. His research interest includes the application and development of systems using electronic and electrical devices, sensors, and microcontrollers. He is actively involved in research activitiioes particularly in onion and salt-related research.

  • Dr. Michelle D. Enriquez, Occidental Mindoro State College

    Dr. Michelle D. Enriquez is presently designated as the Dean of the College of Engineering of Occidental Mindoro State College, Philippines. She finished her degree in PhD Civil Engineering at De La Salle University, Philippines. Her research interests include water resources engineering; development researches in salt processes; water quality monitoring system and policy directions for water management. Dr. Enriquez is actively engaged in publishing in reputable journals and research oresentetation. She hadles externally funedde projects such as Alternative Onion storage System using Controlled temperature and Automatic Air flow mechanism with National Economic Development Authority as project leader.

References

Adelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., & Watteyne, T. (2017). Understanding the limits of LoRaWAN. IEEE Communications Magazine, 55(9), 34–40. https://doi.org/10.1109/mcom.2017.1600613

Aerts, J. C. J. H., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B., Michel-Kerjan, E., Mysiak, J., Surminski, S., & Kunreuther, H. (2018). Integrating human behaviour dynamics into flood disaster risk assessment. Nature Climate Change, 8(3), 193–199. https://doi.org/10.1038/s41558-018-0085-1

Affandi, M. L. A., Din, A. H. M., & Rasib, A. W. (2024). Sea level rise estimation and projection from long-term multi-mission satellite altimetry and tidal data in the Southeast Asia region. International Journal of Remote Sensing, 1–31. https://doi.org/10.1080/01431161.2023.2297179

Anbarasan, M., Muthu, B. A., Sivaparthipan, C. B., Sundarasekar, R., Kadry, S., Krishnamoorthy, S., Samuel, D. J., & Dasel, A. A. (2020). Detection of flood disaster system based on IoT, big data, and convolutional deep neural network. Kean Publications, (1248). https://digitalcommons.kean.edu/keanpublications/1248

Breckpot, M., Blanco, T.B., & Moor, B.D. (2010). Flood control of rivers with nonlinear model predictive control and moving horizon estimation. 49th IEEE Conference on Decision and Control (CDC), 6107-6112.

Chang, N., Guo, D. H. (2006). Urban flash flood monitoring, mapping and forecasting via a tailored sensor network system. Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control 2006, issue 23-25, pp. 757-761

Chaudhary, M. T., & Piracha, A. (2021). Natural Disasters—Origins, Impacts, management. Encyclopedia, 1(4), 1101–1131. https://doi.org/10.3390/encyclopedia1040084

Cheng, C., & Chau, K. (2004). Flood control management system for reservoirs. Environmental Modelling & Software, 19(12), 1141–1150. https://doi.org/10.1016/j.envsoft.2003.12.004

Freer, J., Beven, K. J., Neal, J., Schumann, G., Hall, J., & Bates, P. (2013). Flood risk and uncertainty. In Cambridge University Press eBooks (pp. 190–233). https://doi.org/10.1017/cbo9781139047562.008

Goursaud, C., & Gorce, J. M. (2015). Dedicated networks for IoT: PHY / MAC state of the art and challenges. EAI Endorsed Transactions on Internet of Things, 1(1), e3. https://doi.org/10.4108/eai.26-10-2015.150597

Hassan, W. H. W., Jidin, A. Z., Aziz, S. a. C., & Rahim, N. (2019). Flood disaster indicator of water level monitoring system. International Journal of Electrical and Computer Engineering (IJECE), 9(3), 1694. https://doi.org/10.11591/ijece.v9i3.pp1694-1699

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816–821. https://doi.org/10.1038/nclimate1911

Hughes, D., Greenwood, P., Coulson, G., & Blair, G. (2006). GridStix: Supporting Flood Prediction using Embedded Hardware and Next Generation Grid Middleware. Proceedings - WoWMoM 2006: 2006 International Symposium on a World of Wireless, Mobile and Multimedia Networks, 9, 10.1109/WOWMOM.2006.49. https://doi.org/10.1109/wowmom.2006.49

Inyiama, H. C., Obota, M. E. (2013). Designing Flood Control Systems Using Wireless Sensor Networks. International Journal of Engineering Research and Applications, 3(1), pp. 1374-1382

Jonkman, S. N. (2005). Global perspectives on loss of human life caused by floods. Natural Hazards, 34(2), 151–175. https://doi.org/10.1007/s11069-004-8891-3

Labo, J. J., Floresca, E. E., & Gracilla, L. E. (2016). Development of flood warning system. International Journal of Engineering Research and Applications, 6(1), 57-64.

Liando, J. C., Gamage, A., Tengourtius, A. W., & Li, M. (2019). Known and unknown facts of LORA. ACM Transactions on Sensor Networks, 15(2), 1–35. https://doi.org/10.1145/3293534

Natividad, J. G., & Mendez, J. M. (2018). Flood monitoring and early warning system using ultrasonic sensor. IOP Conference Series Materials Science and Engineering, 325, 012020. https://doi.org/10.1088/1757-899x/325/1/012020

Pandian, A. P. (2019). Enhanced edge model for big data in the internet of things based applications. Journal of trends in Computer Science and Smart Technology (TCSST) 1(1), 63-73. https://doi.org/10.36548/jtcsst.2019.1.006

Paringit, E.C., Abucay, E.R. (2017), LiDAR Surveys and Flood Mapping of Magbando River, Quezon City: University of the Philippines Training Center for Applied Geodesy and Photogrammetry. UP Training Center for Applied Geodesy and Photogrammetry (TCAGP). 201pp

Peng, Y., Shangguan, L., Hu, Y., Qian, Y., Lin, X., Chen, X., Fang, D., & Jamieson, K. (2018). PLORA: a passive long-range data network from ambient LORA transmissions. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication (https://doi.org/10.1145/3230543.3230567; pp. 147–160). https://doi.org/10.1145/3230543.3230567

Priya, S. J., Akshaya, S., Aruna, E., Julie, J. A. M., Ranjani, V. (2017). Flood monitoring and alerting system, International Journal of Computer Engineering & Technology, 8(2), p.15

Ragnoli, M., Barile, G. Leoni, A., Ferri, G., Stornelli, V., (2020). An autonomous low-power LoRa-based flood-monitoring system. Journal of Low Power Electronics and Application, 10 (15), https://doi.org/10.3390/jlpea10020015

Santos, G. D. C. (2021). 2020 tropical cyclones in the Philippines: A review. Tropical Cyclone Research and Review, 10(3), 191–199. https://doi.org/10.1016/j.tcrr.2021.09.003

Satria, D., Yana, S., Munadi, R., Syahreza, S. (2017). Prototype of google maps-based flood monitoring system using Arduino and GSM module, International Research Journal of Engineering and Technology, 4(10).

Shah, W. M., Arif, F., Shahrin, A., & Hassan, A. (2018). The implementation of an IoT-Based flood alert system. International Journal of Advanced Computer Science and Applications, 9(11). https://doi.org/10.14569/ijacsa.2018.091187

Smys, N. D. S., Basar, N. D. A., & Wang, N. D. H. (2020). CNN based Flood Management System with IoT Sensors and Cloud Data. Journal of Artificial Intelligence and Capsule Networks, 2(4), 194–200. https://doi.org/10.36548/jaicn.2020.4.00

Sunkpho, J., & Ootamakorn, C. (2011). Real-time flood monitoring and warning system. Songklanakarin Journal of Science and Technology, 33(2) 227-235. https://rps.wu.ac.th/detail/10002810

Tolentino, L.K., Baron, R.E., Blacer, C.A., Aliswag, J.M., De Guzman, D.C., Fronda, J.B., Valeriano, R.C., Quijano, J.F., Padilla, M.V., Madrigal, G.A., Valenzuela, I., & Fernandez, E.O. (2023). Real time flood detection, alarm and monitoring system using image processing and multiple linear regression. Journal of Computational Innovations and Engineering Applications, 7(1). https://doi.org/10.2139/ssrn.4319789

Windarta, J., Pawitan, H., Subrata, I. D. M., Purwanto, M. J. J., & Suripin. (2010). Flood Early Warning System develop at Garang River Semarang using Information Technology base on SMS and Web. International Journal of Geomatics and Geosciences, 1(1). http://iirc.ipb.ac.id/handle/123456789/40568

Yeon, S., Kang, J., & Lee, I. (2018). A study on real-time flood monitoring system based on sensors using flood damage insurance map. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences/International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W4, 569–571. https://doi.org/10.5194/isprs-archives-xlii-3-w4-569-2018

Yun, R., & Singh, V. P. (2008). Multiple duration limited water level and dynamic limited water level for flood control, with implications on water supply. Journal of Hydrology, 354(1–4), 160–170. https://doi.org/10.1016/j.jhydrol.2008.03.003

Yuwat, C. Kilaso, S. (2011). A wireless sensor network for weather and disaster alarm system, Proceedings of International Conference on Information and Electronics Engineering, IPCSIT 6, pp.1-5

Downloads

Published

2024-12-31

How to Cite

Abella, A. P., & ENRIQUEZ, M. (2024). Community-based flood alert system using long-range technology for Brgy. San Agustin, San Jose, Occidental Mindoro. Mindoro Journal of Social Sciences and Development Studies, 1(2), 27-34. https://journal.omsc.edu.ph/index.php/mjssds/article/view/10

Similar Articles

You may also start an advanced similarity search for this article.