Rootstock compatibility of Maguilas F1 to selected high yielding varieties of tomato scion
Keywords:
callus, compatibility, grafting, rootstock, Solanum lycopersicumAbstract
Tomato (Lycopersicon esculentum) is a globally significant crop, but its cultivation is severely hindered by waterlogging during the rainy season, leading to significant yield losses for farmers, particularly in areas like San Jose, Occidental Mindoro. Grafting offers a promising solution by combining high-yielding scions with waterlogging-tolerant rootstocks. This study investigated the grafting compatibility of three high-yielding tomato scion varieties (Diamante Max F1, Jewel F1, and Garnet F1) with the waterlogging-tolerant Maguilas F1 as a rootstock. Using a Completely Randomized Design (CRD) in a controlled healing chamber, we evaluated grafting success rate, height increment, and days to callus formation. Results showed that the Maguilas F1 and Diamante Max F1 combination exhibited significantly higher grafting success rates (mean = 82.22%) and greater height increments (mean = 3.47 cm) compared to Jewel F1 and Garnet F1. Diamante Max F1 also consistently formed callus earlier, indicating faster wound healing. While there was no statistically significant difference in days to callus formation across treatments, Diamante Max F1's quicker healing contributed to its superior performance. These findings highlight Diamante Max F1 as the most compatible scion for Maguilas F1 rootstock, offering a viable strategy for improving tomato cultivation during adverse rainy season conditions and potentially increasing farmer profitability and consumer access to affordable tomatoes.
References
Akotowanou, N. O. C. A., Adjou, N. E. S., Olubi, N. a. B., Kougblenou, N. S. D., Ahoussi, N. E. D., & Sohounhloué, N. D. C. (2022). The tomato (Solanum lycopersicum L.) in community development: An overview focused on nutritional properties, agronomic constraints, reThe tomato (Solanum lycopersicum L.) in community development: An overview focuscent achievements and future prospective. International Journal of Frontiers in Biology and Pharmacy Research, 3(2), 008–016. https://doi.org/10.53294/ijfbpr.2022.3.2.0061
Albuquerque, G. R., Lucena, L. P., Assunção, E. F., Mesquita, J. C. P., Silva, A. M. F., Souza, E. B., Nicoli, A., & Gama, M. a. S. (2021). Evaluation of tomato rootstocks to Ralstonia solanacearum and R. pseudosolanacearum in Mata mesoregion, PE. Horticultura Brasileira, 39(1), 72–78. https://doi.org/10.1590/s0102-0536-20210111
Cacayurin, C. A., Cacal, D. M., & Ronquillo, S. R. (2024). Effect of different rootstocks and scion ages on the productivity of screenhouse grown tomato (Solanum lycopersicum). Journal of Asian Scientific Research, 14(1), 50–57. https://doi.org/10.55493/5003.v14i1.4988
Daniello, V., De Leo, V., Lasalvia, M., Hossain, M. N., Carbone, A., Catucci, L., Zefferino, R., Ingrosso, C., Conese, M., & Di Gioia, S. (2024). Solanum lycopersicum (Tomato)-Derived Nanovesicles Accelerate Wound Healing by Eliciting the Migration of Keratinocytes and Fibroblasts. International Journal of Molecular Sciences, 25(5), 2452. https://doi.org/10.3390/ijms25052452
Ding, X., Miao, C., Li, R., He, L., Zhang, H., Jin, H., Cui, J., Wang, H., Zhang, Y., Lu, P., Zou, J., Yu, J., Jiang, Y., & Zhou, Q. (2023). Artificial light for improving tomato recovery following grafting: transcriptome and physiological analyses. International Journal of Molecular Sciences, 24(21), 15928. https://doi.org/10.3390/ijms242115928
Duan, Y., Zhang, F., Meng, X., & Shang, Q. (2023). Spatio-temporal dynamics of phytohormones in the tomato graft healing process. Horticultural Plant Journal. https://doi.org/10.1016/j.hpj.2022.11.0
Gomez, C. J. J. (2024). Tomato Price surge and Market Dynamics: Assessing supply, price fluctuations, and strategies for stability and international expansion. PCAARRD's Industry Strategic Science and Technology Programs. https://ispweb.pcaarrd.dost.gov.ph/tomato-price-surge-and-market-dynamics-assessing-supply-price-fluctuations-and-strategies-for-stability-and-international-expansion/
Goto, K., Yabuta, S., Tamaru, S., Ssenyonga, P., Emanuel, B., Katsuhama, N., & Sakagami, J. (2022). Root hypoxia causes oxidative damage on photosynthetic apparatus and interacts with light stress to trigger abscission of lower position leaves in Capsicum. Scientia Horticulturae, 305, 111337. https://doi.org/10.1016/j.scienta.2022.111337
Ide, R., Ichiki, A., Suzuki, T., & Jitsuyama, Y. (2021). Analysis of yield reduction factors in processing tomatoes under waterlogging conditions. Scientia Horticulturae, 295, 110840. https://doi.org/10.1016/j.scienta.2021.110840
Khopade, R. Y., Sawargaonkar, G. L., Rakesh, S., Davala, M. S., K, N. K. K., Siddam, Y., Singh, R., & Jat, M. L. (2025). Vegetable grafting: a scientific innovation to enhance productivity and profitability of tomato growers under climate change. Frontiers in Agronomy, 7. https://doi.org/10.3389/fagro.2025.1514673
Latifah, E., Widaryanto, E., Magh, M. D., & Ariffin. (2018). Effect of Water logging Duration on Growth Phases of Tomatoes (Solanum lycopersicum L.) Grafted on Eggplant Rootstock. Journal of Agronomy, 18(1), 11–20. https://doi.org/10.3923/ja.2019.11.20
Mahbou, S. T. G., Ntsomboh-Ntsefong, G., Aminatou, M. F., Lessa, F. T., Onana, G. E., & Youmbi, E. (2022). Effect of Grafting on Growth and Shelf Life of Tomatoes (<i>Solanum lycopersicum</i> L.) Grafted on Two Local <i>Solanum</i> Species. Advances in Bioscience and Biotechnology, 13(09), 401–418. https://doi.org/10.4236/abb.2022.139026
Mao, Y., Cui, X., Wang, H., Qin, X., Liu, Y., Hu, Y., Chen, X., Mao, Z., & Shen, X. (2022). Study of the grafting compatibility of the apple rootstock 12–2, resistant to apple replant diseases (ARD). BMC Plant Biology, 22(1). https://doi.org/10.1186/s12870-022-03847-8
Mauro, R. P., Agnello, M., Onofri, A., Leonardi, C., & Giuffrida, F. (2020). Scion and rootstock differently influence growth, yield and quality characteristics of cherry tomato. Plants, 9(12), 1725. https://doi.org/10.3390/plants9121725
Pandey, A. K., Singh, A. G., Gadhiya, A. R., Kumar, S., Singh, D., & Mehta, R. (2021). Current approaches in horticultural crops to mitigate waterlogging stress. In Elsevier eBooks (pp. 289–299). https://doi.org/10.1016/b978-0-12-822849-4.00014-0
Petran, A., & Hoover, E. (2013). Solanum torvum as a Compatible Rootstock in Interspecific Tomato Grafting. Journal of Horticulture, 01(01). https://doi.org/10.4172/2376-0354.1000103
Schwarz, D., Rouphael, Y., Colla, G., & Venema, J. H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2), 162–171. https://doi.org/10.1016/j.scienta.2010.09.016
Tareq, M. Z., Sarker, M. S. A., Sarker, M. D. H., Moniruzzaman, M., Hasibuzzaman, A. S. M., & Islam, S. N. (2020). Waterlogging stress adversely affects growth and development of Tomato. Asian Journal of Crop Soil Science and Plant Nutrition, 2(1), 44–50. https://doi.org/10.18801/ajcsp.020120.07
Turhan, A., Ozmen, N., Serbeci, & Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science, 38(4), 142–149. https://doi.org/10.17221/51/2011-hortsci
Vu, N., Zhang, C., Xu, Z., Kim, Y., Kang, H., & Kim, I. (2013). Enhanced graft-take ratio and quality of grafted tomato seedlings by controlling temperature and humidity conditions. Protected Horticulture and Plant Factory, 22(2), 146–153. https://doi.org/10.12791/ksbec.2013.22.2.146

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kate Andrew P. Villarao, Guendoline M. Oyanan, Shakira Isabel V. Meralles, Eleazar Z. De Mesa (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.